Перайсьці да зьместу

Мэтал

Зьвесткі зь Вікіпэдыі — вольнай энцыкляпэдыі
(Перанакіравана з «Мэталы»)

Мэта́л (па-грэцку: metallon — копі) — простае рэчыва, атамы якога вызначаюцца здольнасьцю аддаваць валентныя электроны й пераходзіць у дадатна зараджаныя іёны. Абагуленыя валентныя электроны вольна перамяшчаюцца ў крышталічнай рашотцы, што забясьпечвае хімічную сувязь між атамамі. Будова мэталу апісваецца зонавай тэорыяй.

Большасьць (больш за 85) вядомых хімічных элемэнтаў — мэталы і толькі каля 22 — немэталы.

Адрозьніваюць мэталы галоўных і пабочных падгрупаў Пэрыядычнай сыстэмы хімічных элемэнтаў. Мэталы галоўных падгрупаў завуцца непераходнымі. У іх атамах адбываецца запаўненьне s- і р-электронных абалонак. Мэталы пабочных падгрупаў завуцца пераходнымі. У іх дабудоўваюцца d- і f-абалонкі, у адпаведнасьці з чым яны падзяляюцца на d-групу і дзьве f-групы — лантаноіды й актыноіды.

Фізычныя ўласцівасьці

[рэдагаваць | рэдагаваць крыніцу]

Мэталы вызначаюцца высокай электра- й цеплаправоднасьцю, здольнасьцю адбіваць сьветлавыя хвалі ды плястычнасьцю. У цьвёрдым выглядзе звычайна маюць крышталічную будову. Большасьць крышталізуецца ў простых структурах (кубічных і гексаганальных), якія адпавядаюць найшчыльнейшай кампаноўцы атамаў. Шмат якія з мэталаў могуць існаваць у дзьвюх і больш крышталічных мадыфікацыях. Паліморфныя пераходы часам спалучаюцца са стратаю мэталічных уласьцівасьцяў (напрыклад, пераход белага волава (b-Sn) ў шэрае (a-Sn).

Хімічныя ўласьцівасьці

[рэдагаваць | рэдагаваць крыніцу]

Агульныя для мэталаў хімічныя ўласьцівасьці абумоўленыя слабой сувязьзю валентных электронаў з ядром атама: утварэньне дадатна зараджаных іёнаў (катыёнаў), станоўчая ступень акісьленьня ў злучэньнях, утварэньне асноўных аксыдаў і гідраксыдаў, выцісканьне вадароду з кіслотаў.

Мэталічныя ўласьцівасьці элемэнта праяўляюцца тым яскравей, чым ніжэй ягоная электраадмоўнасьць. У падгрупах Пэрыядычнай сыстэмы з узрастаньнем атамнага нумару электраадмоўнасьць у цэлым зьмяншаецца, а мэталічныя ўласьцівасьці ўзмацняюцца.

Мэталы ад літыя да натрыя лёгка рэагуюць з тленам на холадзе. Іншыя злучаюцца з тленам толькі пры награваньні, а ірыд, плятына й золата з тленам не ўзаемадзейнічаюць. Уласьцівасьці мэталаў характарызуюцца іх месцам у электрахімічным шэрагу. Мэталы ад літыя да натрыя выціскаюць вадарод з вады пры нармальных умовах, а ад магнія да талю — пры награваньні. Мэталы, якія стаяць у электрахімічным шэрагу перад вадародам, выціскаюць яго з разбаўленых кіслотаў (на холадзе або пры награваньні). Мэталы, якія стаяць у электрахімічным шэрагу пасьля вадароду, раствараюцца толькі ў тленавых кіслотах (канцэнтраваная серная або азотная), а плятына й золата — толькі ў сумесі гэтых кіслотаў. Аксыды мэталаў ад літыя да алюмінія ды ад лянтана да цынка аднаўляюцца цяжка. Бліжэй да канца электрахімічнага шэрагу схільнасьць да аднаўленьня павялічваецца. Аксыды апошніх у электрахімічным шэрагу мэталаў распадаюцца на мэталы й тлен ужо пры невялікім награваньні.

Ступені акісьленьня непераходных мэталаў: +1 для падгрупы I а; +2 для II a; +1 і +3 для III a; +2 і +4 для IV a; +2, +3 і +5 для V a; — 2, +2, +4, +6 для VI a. У пераходных М.: +1, +2, +3 для падгрупы I б, +2 для II б; +3 для III б; +2, +3, +4 для IV б; +2, +3, +4, +5 для V б; +2, +3, +4, +5, +6 для VI б, +2, +3, +4, +5, +6, +7 для VII б, от +2 до +8 в VIII б. У лантаноідаў: +2, +3 и +4, у актыноідаў — ад +3 да +6. Аксыды мэталаў з малой ступеньню акісьленьня маюць асноўныя ўласьцівасьці. Аксыды з высокай ступеньню акісьленьня зьяўляюцца ангідрыдамі кіслотаў. Мэталы зь пераменнаю валентнасьцю (напрыклад, хром, марганец, жалеза), у злучэньнях, дзе яны маюць нізкія ступені акісьленьня, (хром (+2), марганец (+2), жалеза (+2)), выяўляюць аднаўленчыя ўласьцівасьці, а ў злучэньнях, дзе яны маюць вышэйшыя ступені акісьленьня (хром (+6), марганец (+7), жалеза (+3)), — акісьляльныя.

Здольнасьць мэталаў да ўтварэньня злучэньняў і паліморфных пераходаў стварае аснову для атрыманьня шматлікіх стопкаў з разнастайнымі карыснымі ўласьцівасьцямі. Колькасьць вядомых стопкаў перавышае 10 тысячаў.

Назоў «мэтал» паходзіць ад грэцкага слова métallon (ад metalléuo — выкапваю, здабываю зь зямлі), якое спачатку азначала копі, руднікі (у Герадота, 5 стагодзьдзе да н. э.). У Старажытнасьці й Сярэднявеччы ведалі 7 мэталаў: золата, срэбра, медзь, волава, сьвінец, жалеза ды ртуць. У 1-й палове 19 ст. былі атрыманыя мэталы плятынавай групы, лужныя й лужназямельныя мэталы, адкрытыя невядомыя мэталы пры хімічным аналізе мінэралаў. У 1860—63 гадох мэтадам спэктральнага аналізу былі адкрытыя цэз, рубід, таль ды інд. У другой палове 20 ст. былі штучна атрыманыя радыяактыўныя мэталы, у прыватнасьці, трансураніды.

Мэталы й іх стопкі шырока выкарыстоўваюцца ў вытворчасьці, перш за ўсё як канструкцыйны матэрыял.

Мікраскапічная будова

[рэдагаваць | рэдагаваць крыніцу]

Характэрныя ўласьцівасьці мэталаў можна апісаць, сыходзячы зь іх унутранай будовы. Усе яны маюць слабую сувязь электронаў зьнешняга энэргетычнага ўзроўню (іншымі словамі, валентных электронаў) зь ядром. Дзякуючы гэтаму створаная рознасьць патэнцыялаў у правадніку прыводзіць да лавінападобнага руху электронаў (званых электронамі праводнасьці) у крышталічнай краце. Сукупнасьць такіх электронаў часта называюць электронным газам. Уклад у цеплаправоднасьць, апроч электронаў, даюць фаноны (ваганьні краткі). Плястычнасьць можна растлумачыць вялікай колькасьцю структурных дэфэктаў (міжвузлавыя атамы, вакансіі і інш.).

Празь лёгкую аддачу электронаў магчыма атляненьне мэталаў, што можа прывесьці да карозіі і далейшай дэградацыі ўласьцівасьцяў. Здольнасьць для атляненьня можна пазнаць па стандартнаму шэрагу актыўнасьці мэталаў. Гэты факт пацьвярджае неабходнасьць выкарыстаньня мэталаў у камбінацыі зь іншымі элемэнтамі (сплаў, важнейшым зь якіх зьяўляецца сталь), іх легіраваньне і прымяненьне розных пакрыцьцяў.

Для больш канкрэтнага апісаньня электронных уласьцівасьцяў мэталаў патрэбна выкарыстоўваць квантавую мэханіку. Ва ўсіх цьвёрдых целах з дастатковай сымэтрыяй узроўні энэргіі электронаў асобных атамаў перакрываюцца і ўтвараюць дазволеныя зоны, прычым зона, утвораная валентнымі электронамі, называецца валентнай зонай. Кволая сувязь валентных электронаў у мэталах прыводзіць да таго, што валентная зона ў мэталах атрымліваецца вельмі шырокай, і ўсіх валентных электронаў не хапае для яе поўнага запаўненьня.