Ядзернае паліва: розьніца паміж вэрсіямі

Зьвесткі зь Вікіпэдыі — вольнай энцыкляпэдыі
Змесціва выдалена Змесціва дададзена
Legobot (гутаркі | унёсак)
д Bot: Migrating 30 interwiki links, now provided by Wikidata on d:q194523 (translate me)
Накід, артаграфія
Радок 5: Радок 5:
[[Файл:Crocus-p1020491.jpg|міні|200пкс|Ядзерны рэактар CROCUS]]
[[Файл:Crocus-p1020491.jpg|міні|200пкс|Ядзерны рэактар CROCUS]]


'''Ядзернае паліва''' — матэрыялы, неабходныя для атрыманьня энэргіі ў [[ядзерным рэактары]]. Ядзернае паліва гэта смесь рэчываў утрымліваючых дзелячыеся ядры і ядры здольныя ў выніку бамбардзіроўкі нейтронамі ствараць дзелячыеся ядры (якія не існуюць у прыродзе). Існуе толькі адно натуральнае ядзернае паліва — уранавае, якое ўтрымлівае дзелячыеся ядра <sup>235</sup>U, забяспечваючыя ўтрыманне ланцужнай рэакцыі (ядзернае гаручае), і г. зв. «сыравінныя» ядра <sup>238</sup>U, здольныя, захопліваючы нейтроны, пераўтварацца ў новыя дзелячыеся ядра <sup>239</sup>Рu, не існуючыя ў прыродзе (паўторнае гаручае):
'''Ядзернае паліва''' — матэрыялы, неабходныя для атрыманьня энэргіі ў [[Ядзерны рэактар|ядзерным рэактары]]. Ядзернае паліва гэта смесь рэчываў утрымліваючых дзелячыеся ядры і ядры здольныя ў выніку бамбардзіроўкі нэўтронамі ствараць дзелячыеся ядры (якія не існуюць у прыродзе). Існуе толькі адно натуральнае ядзернае паліва — уранавае, якое ўтрымлівае дзелячыеся ядры <sup>235</sup>U, забяспечваючыя ўтрыманьне ланцужнай рэакцыі (ядзернае гаручае), і г. зв. «сыравінныя» ядры <sup>238</sup>U, здольныя, захопліваючы нэўтроны, пераўтварацца ў новыя дзелячыеся ядры <sup>239</sup>Рu, якія не існуюць у прыродзе (паўторнае гаручае):
Паўторным гаручым з’яўляюцца так сама не сустракаючыяся ў прыродзе ядра <sup>233</sup>U, якія ўтвараюцца ў выніку захопу нейтронаў паліўнымі ядрамі <sup>232</sup>Th:
Паўторным гаручым зьяўляюцца таксама ядры <sup>233</sup>U, якія не сустракаюцца ў прыродзе і ўтвараюцца ў выніку захопу нэўтронаў паліўнымі ядрамі <sup>232</sup>Th:
Ядзернае паліва выкарыстоўваецца ў [[ядзерных рэактарах]], [[цеплавыдзяляючыя элементы]] якіх уяўляюць сабой звычайна металічныя абалонкі рознай формы і даўжыні, ўтрымліваючыя ядзернае паліва і герметычна завараныя. Для выраўноўвання зазораў паміж [[цеплавыдзяляючымі элементамі]] і для дадання [[цеплавыдзяляючай зборкі]] жорсткасці, сборка мае некалькі канструктыўных элементаў: хватсавік, галоўку, і набор дыстанцыянуючых кратаў, у некаторых выпадках — чахлавую трубу. У залежнасці ад тыпаў рэактараў [[цеплавыдзяляючыя зборкі]] маюць розную колькасць [[цеплавыдзяляючых элементаў]].
Ядзернае паліва выкарыстоўваецца ў [[Ядзерны рэактар|ядзерных рэактарах]], [[цеплавыдзяляючыя элемэнты]] якіх уяўляюць сабой звычайна металічныя абалонкі рознай формы і даўжыні, ўтрымліваючыя ядзернае паліва і герметычна завараныя. Для выраўноўваньня зазораў паміж цеплавыдзяляючымі элемэнтамі і для даданьня цеплавыдзяляючай зборкі жорсткасьці, сборка мае некалькі канструктыўных элемэнтаў: хватсавік, галоўку, і набор дыстанцыянуючых кратаў, у некаторых выпадках — чахлавую трубу. У залежнасьці ад тыпаў рэактараў [[цеплавыдзяляючыя зборкі]] маюць розную колькасьць цеплавыдзяляючых элемэнтаў.


Па хімічным складзе ядзернае паліва можа быць металічным (уключаючы сплавы), аксідным, карбыдным, нітрыдным і інш. Асноўныя патрабаванні да ядзернага паліва: добрая сумеснасць з матэрыялам абалонкі [[цяпловыдзяляючых элементаў]]; высокія тэмпературы плаўлення і выпарэння, вялікая цеплаправоднасць; слабое ўзаемадзеянне з цяплоносбітам; мінімальнае павелічэнне аб’ёма ў працэссе абпраменьвання ў [[рэактары]]; тэхналагічнасць вытворчасці і мінімальная вартасць; простая тэхналёгія рэгенерацыі і інш. Ядзернае паліва, выкарыстоўваемае ў [[рэактар-множальнік|рэактарах-множніках]](брыдэрах) на хуткіх [[нэўтрон|нейтронах]], акрамя таго, павінна забяспечыць высокі каэфіцыент вытворчасьці.
Па хімічным складзе ядзернае паліва можа быць металічным (уключаючы сплавы), аксідным, карбыдным, нітрыдным і інш. Асноўныя патрабаваньні да ядзернага паліва: добрая сумяшчальнасьць з матэрыялам абалонкі цяпловыдзяляючых элемэнтаў; высокія тэмпературы плаўленьня і выпарэньня, вялікая цеплаправоднасьць; слабое ўзаемадзеяньне з цепланосбітам; мінімальнае павелічэньне аб’ёма ў працэссе абпраменьваньня ў [[Ядзерны рэактар|рэактары]]; тэхналагічнасьць вытворчасьці і мінімальны кошт; простая тэхналёгія рэгенерацыі і інш. Ядзернае паліва, выкарыстоўваемае ў [[рэактар-множальнік|рэактарах-множніках]] (брыдэрах) на хуткіх [[нэўтрон]]ах, акрамя таго, павінна забяспечыць высокі каэфіцыент вытворчасьці.


Уранавае ядзернае паліва для [[ядзерны рэактар|ядзерных рэактараў]] на цеплавых нейтронах, складаючых аснову ядзернай энергетыкі, мае звычайна павышанае ўтрыманне ізатопа <sup>235</sup>U (2 — 4% па масе замест 0,71% у натуральным уране). Істотны недахоп рэактараў на цеплавых нейтронах — нізкі каэфіцыент выкарыстоўвання натуральнага урана. Значна больш высокі каэфіцыент выкарыстоўвання ўрана можа быць дасягнуты ў [[рэактар-множальнік|рэактарах-множніках]] на хуткіх нейтронах. Тут выкарыстоўваецца уран з больш высокіх ўтрыманнем урана <sup>235</sup>U (да 30%), а ў будучыні, у ходзе павялічэння колькасці <sup>239</sup>Pu, будзе выкарыстоўвацца змешанае ўран-плутоніевае ядзернае паліва з 15 — 20% Pu. У гэтым выпадку замест узбагачанага ўрана мажна выкарыстоўваць натуральны і нават уран, збяднённы <sup>235</sup>U, якога назапашана ў свеце вялікая колькасьць. Збяднёны ўран (без Pu) выкарыстоўваецца так сама ў экраннай зоне [[рэактар-множальнік|рэактара-множніка]] (зоне ўтварэньня), па вазе якая перавышае ў некалькі разоў актыўную зону. У рэактарах на хуткіх нейтронах, працуючых на уран-плутоніевам ядзерным паліве, колькасць назапашваючагася <sup>239</sup>Рu можа істотна перавышаць колькасць сгараемага, г. зн. мае месца ўтварэньне ядзернага паліва. Каэфіцыент утварэння залежыць ад склада ядзернага паліва. Па ступені яго ўзрастання ядзернае паліва размяшчаецца ў наступным парадку: окіснае (U, Рu) О2, карбіднае (V, Pu) C, нітрыднае (U, Pu) N і металічнае ў выглядзе розных сплаваў. Аднак, у апошнія дзесяцігодзьдзі павялічылася верагоднасць набыцця урану ці плутонію з боку тэрарыстычных груповак, з-за чаго пашырэньне будаўніцтва [[рэактар-множальнік|рэактараў-размнажальнікаў]] хутчэй за ўсё будзе зьніжана.
Уранавае ядзернае паліва для [[ядзерны рэактар|ядзерных рэактараў]] на цеплавых нэўтронах, складаючых аснову ядзернай энергетыкі, мае звычайна павышанае ўтрыманьне ізатопу <sup>235</sup>U (2 — 4% па масе замест 0,71% у натуральным уране). Істотны недахоп рэактараў на цеплавых нэўтронах — нізкі каэфіцыент выкарыстоўваньня натуральнага урана. Значна больш высокі каэфіцыент выкарыстоўваньня ўрана можа быць дасягнуты ў [[рэактар-множальнік|рэактарах-множніках]] на хуткіх нэўтронах. Тут выкарыстоўваецца уран з больш высокіх ўтрыманьнем урана <sup>235</sup>U (да 30%), а ў будучыні, у ходзе павялічэньня колькасьці <sup>239</sup>Pu, будзе выкарыстоўвацца змешанае ўран-плутоніевае ядзернае паліва з 15 — 20% Pu. У гэтым выпадку замест узбагачанага ўрана мажна выкарыстоўваць натуральны і нават адпрацаваны уран, якога назапашана ў сьвеце вялікая колькасьць. Збяднёны ўран (без Pu) выкарыстоўваецца так сама ў экраннай зоне [[рэактар-множальнік|рэактара-множніка]] (зоне ўтварэньня), па вазе якая перавышае ў некалькі разоў актыўную зону. У рэактарах на хуткіх нэўтронах, якія працуюць на уран-плутоніевым ядзерным паліве, колькасьць <sup>239</sup>Рu, які назапашваецца, можа істотна перавышаць колькасьць таго, які згарае. Г. зн. мае месца ўтварэньне ядзернага паліва. Каэфіцыент утварэньня залежыць ад склада ядзернага паліва. Па ступені яго ўзрастаньня ядзернае паліва размяшчаецца ў наступным парадку: окіснае (U, Рu) О2, карбіднае (V, Pu) C, нітрыднае (U, Pu) N і металічнае ў выглядзе розных сплаваў. Аднак, у апошнія дзесяцігодзьдзі павялічылася верагоднасьць набыцця урану ці плутонію з боку тэрарыстычных груповак, з-за чаго пашырэньне будаўніцтва [[рэактар-множальнік|рэактараў-размнажальнікаў]] хутчэй за ўсё будзе зьніжана.


Вытворчасьць уранавага ядзернага паліва пачынаецца з перапрацоўкі руды з мэтай выдзяленьня з іх урана. Пры папярэднім сартаванні руды па <math>\gamma</math>-апраменьваньню ў адвал выдаляюць 20 — 30% пароды з утрыманнем урана <math>\eta</math> = 0,01% (ужываюцца з звыклыя метады ўзбагачэньня). Гідраметалургічная пераапрацоўка руды складаецца з яе драбненьня, кіслотным вылугаваньні, экстракцыйным здабываньні U з асветленых раствораў і атрыманьні ачышчанага закіса-вокіса урана <math>U_3</math><math>O_8</math>. Для рудаў, бедных уранам і лёгкіх для вылугаваньня (асабліва ў цажкіх для горных работ варунках), ужываецца падземнае вылугаванне (для пластавых месцанарадзэнняў — праз сістэму скважын, для жыльных — ў падземных камерах з папярэдняй адбойкай і змяльчэнні руды выбуховымі мэтадамі).
Вытворчасьць уранавага ядзернага паліва пачынаецца з перапрацоўкі руды з мэтай выдзяленьня з іх урана. Пры папярэднім сартаваньні руды па <math>\gamma</math>-апраменьваньню ў адвал выдаляюць 20 — 30% пароды з утрыманьнем урану <math>\eta</math> = 0,01% (ужываюцца з звыклыя метады ўзбагачэньня). Гідраметалургічная пераапрацоўка руды складаецца з яе драбненьня, кіслотным вылугаваньні, экстракцыйным здабываньні U з асветленых раствораў і атрыманьні ачышчанага закіса-вокіса урана U<sub>3</sub>O<sub>8</sub>. Для рудаў, бедных уранам і лёгкіх для вылугаваньня (асабліва ў цажкіх для горных работ варунках), ужываецца падземнае вылугаванне (для пластавых месцанарадзэньняў — праз сыстэму сьвідравін, для жыльных — ў падземных камерах з папярэдняй адбойкай і змяльчэнні руды выбуховымі мэтадамі).


Далей <math>U_3</math><math>O_8</math> пераводзяць у тэтрафтарыд U<math>F_4</math> для наступнага атрымання металічнага ўрана ці ў гексафтарыд U<math>F_6</math> — адзінае ўстойлівае газавае злучэнне ўрана, выкарыстоўваемае для ўзбагачэння ўрана ізатопам <sup>235</sup>U. Узбагачэнне ажыццяўлаецца метадам газавай тэрмадыфузіі ці цэнтрыфугаваннем. Далей U<math>F_6</math> пераўтвараюць у двуокісь урана, якая выкарыстоўваецца для вырабу стрыжняў цеплавыдзяляючых элементаў ці для атрымання іншых злучэнняў урана з той жа мэтай.
Далей <math>U_3</math><math>O_8</math> пераводзяць у тэтрафтарыд <math>UF_4</math> для наступнага атрымання металічнага ўрана ці ў гексафтарыд <math>UF_6</math> — адзінае ўстойлівае газавае злучэнне ўрана, выкарыстоўваемае для ўзбагачэння ўрана ізатопам <sup>235</sup>U. Узбагачэнне ажыццяўлаецца метадам газавай тэрмадыфузіі ці цэнтрыфугаваннем. Далей <math>UF_6</math> пераўтвараюць у двуокісь урана, якая выкарыстоўваецца для вырабу стрыжняў цеплавыдзяляючых элемэнтаў ці для атрымання іншых злучэнняў урана з той жа мэтай.


Да стрыжняў цеплавыдзяляючых элементаў прад’яўляюць высокія патрабаваньні ў адносінах стэхіаметрычнага складу і ўтрыманьня старонніх дамешак. Так у стрыжнях 113 UO2 адносіны (па масе) кісларода і метала павінна быць у межах 2,00 — 2,02; дапушчальнае ўтрыманне F і <math>H_2</math>O (па масе) адпаведна не болей 0,01 — 0,006% і 0,001%.
Да стрыжняў цеплавыдзяляючых элемэнтаў прад’яўляюць высокія патрабаваньні ў адносінах стэхіаметрычнага складу і ўтрыманьня старонніх дамешак. Так у стрыжнях 113 UO2 адносіны (па масе) кісларода і метала павінна быць у межах 2,00 — 2,02; дапушчальнае ўтрыманне F і <math>H_2O</math> (па масе) адпаведна не болей 0,01 — 0,006% і 0,001%.


Торый як сыравінны матэрыял для атрыманьня дзелячыхся ядраў <sup>235</sup>U не знайшоў шырокага ўжываньня зь некалькіх прычынаў:
Торый як сыравінны матэрыял для атрыманьня дзелячыхся ядраў <sup>235</sup>U не знайшоў шырокага ўжываньня зь некалькіх прычынаў:
Радок 25: Радок 25:
# Вядомыя запасы U у стане забяспечыць ядзерную энэргетыку палівам на многія дзесяцігодззі;
# Вядомыя запасы U у стане забяспечыць ядзерную энэргетыку палівам на многія дзесяцігодззі;
# Th не ўтварае вялікіх месцанараджэнняў, і тэхналёгія яго выняцьця з руды складаней;
# Th не ўтварае вялікіх месцанараджэнняў, і тэхналёгія яго выняцьця з руды складаней;
# Разам з <sup>235</sup>U атрымліваецца <sup>232</sup>U, які, распадаючыся, утварае <math>\gamma</math>-актыўныя ядра (<sup>212</sup>Bi, <sup>208</sup>Te), абцяжарваючыя абыходжанне з такім ядзерным палівам і ускладняючыя вытворчасць цеплавыдзяляючых элементаў;
# Разам з <sup>235</sup>U атрымліваецца <sup>232</sup>U, які, распадаючыся, утварае <math>\gamma</math>-актыўныя ядра (<sup>212</sup>Bi, <sup>208</sup>Te), абцяжарваючыя абыходжанне з такім ядзерным палівам і ускладняючыя вытворчасьць цеплавыдзяляючых элемэнтаў;
# Пераапрацоўка абпрамененых торыевых цеплавыдзяляючых элементаў з мэтай вымання з іх <sup>233</sup>U з’яўляецца больш складанай аперацыяй у параўнанні з пераапрацоўкай уранавых цеплавыдзяляючых элементаў.
# Пераапрацоўка абпрамененых торыевых цеплавыдзяляючых элемэнтаў з мэтай вымання з іх <sup>233</sup>U з’яўляецца больш складанай аперацыяй у параўнанні з пераапрацоўкай уранавых цеплавыдзяляючых элемэнтаў.


У працэсе карыстаньня цеплавыдзяляючых элементаў ядзернае паліва выгарае не поўнасцю, у [[рэактар-множальнік|рэактарах-множніках]] мае месца ўзнаўленне ядзернага паліва (Pu). З-за гэтага адпрацаваныя цеплавыдзяляючыя элементы накіроўваюць на пераапрацоўку з мэтай рэгенерацыі ядзернага паліва для паўторнага выкарыстання; U і Pu чысцяць ад прадуктаў дзялення. Потым Pu у выглядзе Pu<math>O_2</math> накіроўваюць для вытворчасці стрыжняў, а U, у залежнасці ад яго ізатопнага склада, ці так сама накіроўваюць для вытворчасці стрыжняў, ці пераўтвараюць у U<math>F_6</math> з мэтай узбагачэння <sup>235</sup>U.
У працэсе карыстаньня цеплавыдзяляючых элемэнтаў ядзернае паліва выгарае ня цалкам, у [[рэактар-множальнік|рэактарах-множніках]] мае месца ўзнаўленьне ядзернага паліва (Pu). З-за гэтага адпрацаваныя цеплавыдзяляючыя элемэнты накіроўваюць на пераапрацоўку з мэтай рэгенерацыі ядзернага паліва для паўторнага выкарыстання; U і Pu ачышчаюць ад прадуктаў дзялення. Потым Pu у выглядзе PuO<sub>2</sub> накіроўваюць для вытворчасьці стрыжняў, а U, у залежнасьці ад яго ізатопнага склада, ці так сама накіроўваюць для вытворчасьці стрыжняў, ці пераўтвараюць у UF<sub>6</sub> з мэтай узбагачэння <sup>235</sup>U.
Рэгенерацыя ядзернага паліва — складаны і дарагі працэс пераапрацоўкі высокарадыёактыўных рэчываў, патрабуючы абароны ад радыёактыўных выпраменьванняў і дыстанцыйнага кіраванняўсімі аперацыямі нават пасля доўгай вытрымкі адпрацаваных цепоавыдзяляьных элементаў.Пры гэтым у кожным апараце абмяжоўваецца дапушчальная колькасць дзелячыхся рэчываў, каб перадухіліць узнікненне некантраляванай ланцужнай рэакцыі. Вялікія цяжкасці звязаны з пераапрацоўкай і пахаваннем радыёактыўных адыходаў. Распрацоўваюцца метады ашклянення і бітумавання адыходаў, «закачка» слабаактыўных раствораў у глыбіню Зямлі. Кошт працэсаў рэгенерацыі ядзернага паліва і пераапрацоўкі радыёактыўных адыходаў аказвае істотны ўплыў на эканамічныя паказчыкі атамных электрастанцый.
Рэгенерацыя ядзернага паліва — складаны і дарагі працэс пераапрацоўкі высокарадыёактыўных рэчываў, патрабуючы абароны ад радыёактыўных выпраменьванняў і дыстанцыйнага кіраванняўсімі аперацыямі нават пасля доўгай вытрымкі адпрацаваных цепоавыдзяляьных элемэнтаў.Пры гэтым у кожным апараце абмяжоўваецца дапушчальная колькасьць дзелячыхся рэчываў, каб перадухіліць узнікненне некантраляванай ланцужнай рэакцыі. Вялікія цяжкасьці звязаныя з пераапрацоўкай і пахаваннем радыёактыўных адыходаў. Распрацоўваюцца метады ашклянення і бітумавання адыходаў, «закачка» слабаактыўных раствораў у глыбіню Зямлі. Кошт працэсаў рэгенерацыі ядзернага паліва і пераапрацоўкі радыёактыўных адыходаў аказвае істотны ўплыў на эканамічныя паказчыкі атамных электрастанцый.


{{Ядзерная тэхналёгія}}
{{Накід:Ядзерная фізыка}}
[[Катэгорыя:Фізыка]]
[[Катэгорыя:Фізыка]]
[[Катэгорыя:Ядзерная энэргетыка]]
[[Катэгорыя:Ядзерная энэргетыка]]

Вэрсія ад 14:19, 18 кастрычніка 2013

Уранавая руда
Ядзерны рэактар CROCUS

Ядзернае паліва — матэрыялы, неабходныя для атрыманьня энэргіі ў ядзерным рэактары. Ядзернае паліва гэта смесь рэчываў утрымліваючых дзелячыеся ядры і ядры здольныя ў выніку бамбардзіроўкі нэўтронамі ствараць дзелячыеся ядры (якія не існуюць у прыродзе). Існуе толькі адно натуральнае ядзернае паліва — уранавае, якое ўтрымлівае дзелячыеся ядры 235U, забяспечваючыя ўтрыманьне ланцужнай рэакцыі (ядзернае гаручае), і г. зв. «сыравінныя» ядры 238U, здольныя, захопліваючы нэўтроны, пераўтварацца ў новыя дзелячыеся ядры 239Рu, якія не існуюць у прыродзе (паўторнае гаручае):

Паўторным гаручым зьяўляюцца таксама ядры 233U, якія не сустракаюцца ў прыродзе і ўтвараюцца ў выніку захопу нэўтронаў паліўнымі ядрамі 232Th:

Ядзернае паліва выкарыстоўваецца ў ядзерных рэактарах, цеплавыдзяляючыя элемэнты якіх уяўляюць сабой звычайна металічныя абалонкі рознай формы і даўжыні, ўтрымліваючыя ядзернае паліва і герметычна завараныя. Для выраўноўваньня зазораў паміж цеплавыдзяляючымі элемэнтамі і для даданьня цеплавыдзяляючай зборкі жорсткасьці, сборка мае некалькі канструктыўных элемэнтаў: хватсавік, галоўку, і набор дыстанцыянуючых кратаў, у некаторых выпадках — чахлавую трубу. У залежнасьці ад тыпаў рэактараў цеплавыдзяляючыя зборкі маюць розную колькасьць цеплавыдзяляючых элемэнтаў.

Па хімічным складзе ядзернае паліва можа быць металічным (уключаючы сплавы), аксідным, карбыдным, нітрыдным і інш. Асноўныя патрабаваньні да ядзернага паліва: добрая сумяшчальнасьць з матэрыялам абалонкі цяпловыдзяляючых элемэнтаў; высокія тэмпературы плаўленьня і выпарэньня, вялікая цеплаправоднасьць; слабое ўзаемадзеяньне з цепланосбітам; мінімальнае павелічэньне аб’ёма ў працэссе абпраменьваньня ў рэактары; тэхналагічнасьць вытворчасьці і мінімальны кошт; простая тэхналёгія рэгенерацыі і інш. Ядзернае паліва, выкарыстоўваемае ў рэактарах-множніках (брыдэрах) на хуткіх нэўтронах, акрамя таго, павінна забяспечыць высокі каэфіцыент вытворчасьці.

Уранавае ядзернае паліва для ядзерных рэактараў на цеплавых нэўтронах, складаючых аснову ядзернай энергетыкі, мае звычайна павышанае ўтрыманьне ізатопу 235U (2 — 4% па масе замест 0,71% у натуральным уране). Істотны недахоп рэактараў на цеплавых нэўтронах — нізкі каэфіцыент выкарыстоўваньня натуральнага урана. Значна больш высокі каэфіцыент выкарыстоўваньня ўрана можа быць дасягнуты ў рэактарах-множніках на хуткіх нэўтронах. Тут выкарыстоўваецца уран з больш высокіх ўтрыманьнем урана 235U (да 30%), а ў будучыні, у ходзе павялічэньня колькасьці 239Pu, будзе выкарыстоўвацца змешанае ўран-плутоніевае ядзернае паліва з 15 — 20% Pu. У гэтым выпадку замест узбагачанага ўрана мажна выкарыстоўваць натуральны і нават адпрацаваны уран, якога назапашана ў сьвеце вялікая колькасьць. Збяднёны ўран (без Pu) выкарыстоўваецца так сама ў экраннай зоне рэактара-множніка (зоне ўтварэньня), па вазе якая перавышае ў некалькі разоў актыўную зону. У рэактарах на хуткіх нэўтронах, якія працуюць на уран-плутоніевым ядзерным паліве, колькасьць 239Рu, які назапашваецца, можа істотна перавышаць колькасьць таго, які згарае. Г. зн. мае месца ўтварэньне ядзернага паліва. Каэфіцыент утварэньня залежыць ад склада ядзернага паліва. Па ступені яго ўзрастаньня ядзернае паліва размяшчаецца ў наступным парадку: окіснае (U, Рu) О2, карбіднае (V, Pu) C, нітрыднае (U, Pu) N і металічнае ў выглядзе розных сплаваў. Аднак, у апошнія дзесяцігодзьдзі павялічылася верагоднасьць набыцця урану ці плутонію з боку тэрарыстычных груповак, з-за чаго пашырэньне будаўніцтва рэактараў-размнажальнікаў хутчэй за ўсё будзе зьніжана.

Вытворчасьць уранавага ядзернага паліва пачынаецца з перапрацоўкі руды з мэтай выдзяленьня з іх урана. Пры папярэднім сартаваньні руды па -апраменьваньню ў адвал выдаляюць 20 — 30% пароды з утрыманьнем урану = 0,01% (ужываюцца з звыклыя метады ўзбагачэньня). Гідраметалургічная пераапрацоўка руды складаецца з яе драбненьня, кіслотным вылугаваньні, экстракцыйным здабываньні U з асветленых раствораў і атрыманьні ачышчанага закіса-вокіса урана U3O8. Для рудаў, бедных уранам і лёгкіх для вылугаваньня (асабліва ў цажкіх для горных работ варунках), ужываецца падземнае вылугаванне (для пластавых месцанарадзэньняў — праз сыстэму сьвідравін, для жыльных — ў падземных камерах з папярэдняй адбойкай і змяльчэнні руды выбуховымі мэтадамі).

Далей пераводзяць у тэтрафтарыд для наступнага атрымання металічнага ўрана ці ў гексафтарыд — адзінае ўстойлівае газавае злучэнне ўрана, выкарыстоўваемае для ўзбагачэння ўрана ізатопам 235U. Узбагачэнне ажыццяўлаецца метадам газавай тэрмадыфузіі ці цэнтрыфугаваннем. Далей пераўтвараюць у двуокісь урана, якая выкарыстоўваецца для вырабу стрыжняў цеплавыдзяляючых элемэнтаў ці для атрымання іншых злучэнняў урана з той жа мэтай.

Да стрыжняў цеплавыдзяляючых элемэнтаў прад’яўляюць высокія патрабаваньні ў адносінах стэхіаметрычнага складу і ўтрыманьня старонніх дамешак. Так у стрыжнях 113 UO2 адносіны (па масе) кісларода і метала павінна быць у межах 2,00 — 2,02; дапушчальнае ўтрыманне F і (па масе) адпаведна не болей 0,01 — 0,006% і 0,001%.

Торый як сыравінны матэрыял для атрыманьня дзелячыхся ядраў 235U не знайшоў шырокага ўжываньня зь некалькіх прычынаў:

  1. Вядомыя запасы U у стане забяспечыць ядзерную энэргетыку палівам на многія дзесяцігодззі;
  2. Th не ўтварае вялікіх месцанараджэнняў, і тэхналёгія яго выняцьця з руды складаней;
  3. Разам з 235U атрымліваецца 232U, які, распадаючыся, утварае -актыўныя ядра (212Bi, 208Te), абцяжарваючыя абыходжанне з такім ядзерным палівам і ускладняючыя вытворчасьць цеплавыдзяляючых элемэнтаў;
  4. Пераапрацоўка абпрамененых торыевых цеплавыдзяляючых элемэнтаў з мэтай вымання з іх 233U з’яўляецца больш складанай аперацыяй у параўнанні з пераапрацоўкай уранавых цеплавыдзяляючых элемэнтаў.

У працэсе карыстаньня цеплавыдзяляючых элемэнтаў ядзернае паліва выгарае ня цалкам, у рэактарах-множніках мае месца ўзнаўленьне ядзернага паліва (Pu). З-за гэтага адпрацаваныя цеплавыдзяляючыя элемэнты накіроўваюць на пераапрацоўку з мэтай рэгенерацыі ядзернага паліва для паўторнага выкарыстання; U і Pu ачышчаюць ад прадуктаў дзялення. Потым Pu у выглядзе PuO2 накіроўваюць для вытворчасьці стрыжняў, а U, у залежнасьці ад яго ізатопнага склада, ці так сама накіроўваюць для вытворчасьці стрыжняў, ці пераўтвараюць у UF6 з мэтай узбагачэння 235U. Рэгенерацыя ядзернага паліва — складаны і дарагі працэс пераапрацоўкі высокарадыёактыўных рэчываў, патрабуючы абароны ад радыёактыўных выпраменьванняў і дыстанцыйнага кіраванняўсімі аперацыямі нават пасля доўгай вытрымкі адпрацаваных цепоавыдзяляьных элемэнтаў.Пры гэтым у кожным апараце абмяжоўваецца дапушчальная колькасьць дзелячыхся рэчываў, каб перадухіліць узнікненне некантраляванай ланцужнай рэакцыі. Вялікія цяжкасьці звязаныя з пераапрацоўкай і пахаваннем радыёактыўных адыходаў. Распрацоўваюцца метады ашклянення і бітумавання адыходаў, «закачка» слабаактыўных раствораў у глыбіню Зямлі. Кошт працэсаў рэгенерацыі ядзернага паліва і пераапрацоўкі радыёактыўных адыходаў аказвае істотны ўплыў на эканамічныя паказчыкі атамных электрастанцый.