Перайсьці да зьместу

Канічнае сечыва

Зьвесткі зь Вікіпэдыі — вольнай энцыкляпэдыі
(Перанакіравана з «Сячэньні конуса»)
Канічныя сечывы. А) парабала В) эліпс і акружына С) гіпэрбала

Кані́чныя (стажко́выя) се́чывы[1][2][3] (канічныя сячэньні) — лініі, якія атрымліваюцца пры перасячэньні прамога кругавога конуса роўніцамі, што не праходзяць празь вяршыню гэтага конуса. Канічнымі сечывамі зьяўляюцца:

  • эліпс — атрымліваецца, калі сякучая роўніца перасякае ўсе ўтваральная конуса ў пунктах адной яго поласьці. Акружына ёсьць адным з выпадкаў эліпса і атрымліваецца, калі сечная роўніца пэрпэндакулярная восі конуса.
  • парабала — сечная роўніца паралельная адной з датычных роўніцаў конуса.
  • гіпэрбала — сечная роўніца перасякае абедзьве поласьці конуса.

Вызначэньне праз эксцэнтрысытэт

[рэдагаваць | рэдагаваць крыніцу]
Эліпс (e=1/2), парабала (e=1) ды гіпэрбала (e=2) з фокусам F і дырэктрысай.

Канічнае сечыва — геамэтрычнае месца пунктаў, для кожнага зь якіх стасунак ягоных адлегласьцяў да фокуса і да дырэктрысы роўны аднаму ліку e, які называецца эксцэнтрысытэтам. Пры гэтым калі 0 < e < 1 атрымліваецца эліпс; e = 1 — парабала; e > 1 — гіпэрбала (праз такое вызначэньне нельга атрымаць акружыну, бо яна ня мае дырэктрысы).

Каардынатнае ўяўленьне

[рэдагаваць | рэдагаваць крыніцу]

Канічныя сечывы зьяўляюцца лініямі другога парадку (але ня ўсе лініі другога парадку зьяўляюцца канічнымі сечывамі), і іх можна апісаць мнагаскладам:

(пры гэтым , , ня роўны нулю)

калі:

  • , то канічнае сечыва зьяўляецца эліпсам
    • калі ж яшчэ выконваецца і ўмова і  — акружынай
  •  — парабала
  •  — гіпэрбала
  1. ^ Матэматычная энцыклапедыя. — Менск: Тэхналогія, 2001. ISBN 985-458-059-8
  2. ^ Тэрміналагічны слоўнік па вышэйшай матэматыцы для ВНУ / Т. Сухая, Р. Еўдакімава, В. Траццякевіч, Н. Гудзень. — Мн.: Навука і тэхніка, 1993. С. 154
  3. ^ Руска-беларускі фізічны слоўнік / Уклад. Самайлюковіч У., Пазняк У., Сабалеўскі А. — Мн.: Навука і тэхніка, 1994. С. 216